lundi 8 août 2011

Les stèles murales

Les “stèles murales” présentées ci-dessous sont réalisées en utilisant une technique de fabrication particulière, mise au point dans mon atelier, qui leur donne à la fois légèreté et solidité.

 Ces céramiques murales se caractérisent par leur extrême finesse et donc elles peuvent facilement être fixées, de part leurs faibles poids, sur toutes les types de murs ou de cloisons. Il y a en outre au dos de chaque pièce trois points d’accroche pour une fixation plus aisée.

Le “craquelage” est obtenu en posant une terre humide sur une fine couche de terre  ayant séchée totalement. La terre, en perdant son eau entre en tension avec la terre support et se fissure en surface selon un graphisme préalablement dessiné. Des cuissons oxydo-réductrices dévellopent les différentes couleurs des oxydes métalliques mélangés à la terre de recouvrement. Cette approche technique est très délicate et demande une longue mise en oeuvre.

Photos: Dominique Legros

Lire la suite...

Le Musée de la Poterie

situé dans l’ancienne chapelle du village propose une exposition permanente de pièces exceptionnelles, des expositions temporaires à thème, des vidéos, cartes postales, catalogues.

Lire la suite...

Les terres enfumées noires

La mise en forme de mes objets céramiques suit une progression naturelle. Je définis tout d’abord la forme générale avec une terre très légère de ma fabrication puis, après un séchage partiel, je la recouvre d’une couche de terre raku très solide en précisant la forme. Evidage de la pièce puis séchage complet.
    Le craquelage est obtenu en recouvrant la céramique, après l’avoir longuement grattée et ré humidifiée, d’une fine couche d’argile colorée sur toute la surface de la pièce, puis je procède au polissage avec une agathe, cette opération minutieuse est longue et très délicate.
    Après un deuxième séchage complet, la pièce est cuite à 900 / 1000°, puis retirée du four à la main à cette température, et déposée- rouge - sur un lit de sciure sèche pour être enfumée. 

Lire la suite...

Terres craquelées

Terres craquelées et polies

Cette technique originale est difficile à mettre en œuvre puisqu’elle consiste à recouvrir une terre sèche avec une autre, humide, et de la polir manuellement avant qu’elle ne craquelle.

Le modelage de la forme est réalisé avec une terre structurante de type «raku» épaisse et très solide en tenant compte de l’épaisseur de la couche de terre  qui la recouvrira.
 Elle est en quelle sorte le squelette et le support de la forme finale.
 Après un séchage complet de la céramique, celle-ci est réhumifiée abondamment, puis recouverte d’une fine couche de terre colorée dans la masse avec des oxydes métalliques pour leur donner une coloration. De nombreux polissages réalisés en suivant le séchage de l’argile avec une pierre dure, une agathe de préférence, densifie la terre en lui apportant une belle brillance. Un brûlage à la flamme vive permet de révéler le craquelage de la terre et met la céramique en tension.
  Après une lente cuisson au four à gaz je retire la pièce incandescente du four rougeoyant et je procède à un enfumage de la terre en posant celle-ci sur un lit de sciure et en la recouvrant partiellement avec cette même sciure pour faire apparaître des variations de couleur.
  Après un nettoyage méticuleux je cire légèrement à chaud la céramique avec une cire d’abeille naturelle pour lui donner plus de douceur.
   

Lire la suite...

Les grès four cuits dans un four à bois


« Terres repoussées » cuites dans un four à bois. 

J’utilise pour ce travail le grès de La Borne qui a une très bonne tenue à haute température, il « prend bien la flamme » et révèle une belle couleur au feu

 Je recouvre la terre avec une fine couche de porcelaine tendre que j’incise avec une fine lame selon un dessin géométrique.Je repousse délicatement cette terre de l’intérieur pour obtenir une forme ronde d’une extrême finesse puis je termine le modelage en rajoutant de la terre  pour lui donner plus de solidité et préciser la forme.
Une longue cuisson de 30 h dans un four à bois à flamme renversée permet aux cendres du bois de chauffage de se déposer et de fondre sur les céramiques ce qui donne toutes les nuances de couleurs que l’on peut apprécier sur les photographies qui vous sont présentées ci-dessous.

Photos: Dominique Legros

Lire la suite...

Le terres polies et raku-nu



Modelage d’une forme qui est ensuite, suivant son degrés de séchage lissée à la main puis polie en trois passages successifs avec une agathe, pierre très dure. Ce travail est long et demande beaucoup d’application, il consiste à «serrer» la terre sans la rayer par de nombreux passages, ce qui la densifit et lui donne une plus grande solidité. La terre ainsi travaillée devient brillante, sa forme est beaucoup plus précise. La texture  de la céramique acquière ainsi une tension de surface très forte qui lui donne une grande beauté.

Cuisson lente de la céramique à 1000°.

 Le « raku-nu » :

Cette technique céramique est double :


- Dans un premier temps je réalise une  terre polie selon le procédé ci-dessus expliqué que le cuit également à 1000 °.
- Dans un deuxième temps, après avoir posé une fine couche de terre réfractaire sur la céramique pour la protéger, je la recouvre d’un émail « raku », c’est à dire d’un émail qui craquelle à la cuisson. Deuxième cuisson à 1000°, puis enfumage dans un bac de sciure de cette pièce qui est sortie incandescente du four. Refroidissement. Après  un délicat nettoyage de la céramique le graphisme du craquelage de l’émail apparait enfumé sur la céramique polie.

Photos; Dominique Legros

Lire la suite...

Surfaces

Voici quelques images des textures céramiques dans différentes techniques telques terres polies, craquelage, émail raku, glaçures cristallines, cuivres saturés, raku-nu, …

Lire la suite...

dimanche 7 août 2011

Le four anagama de La Borne

 

 

CUISSON D'UN FOUR ANAGAMA

 


Le premier four anagama a été construit par les membres de l'association en 2002. Il a effectué de nombreuses cuissons, ce qui a nécessité son entière reconstruction cet hiver 2024. Une dizaine de personnes de notre association (bénévoles) au minimum ont participé à cette construction.
D’inspiration japonaise, le four anagama est un four à chambre unique, dit «four à flamme directe » en forme arrondie pour faciliter la circulation de la flamme. Il existe de nombreux autres types de fours à bois , tels le four « noborigama » qui possède plusieurs chambres d’enfournements, ce qui permet une meilleure isothermermie mais atténue les marques de cendres  et les effets de flammes. Il y a aussi des « fours bouteilles », fours à flammes renversées, bouclées, à air pulsée, …
Les fours traditionnels de La Borne sont, le plus sauvent, des fours à flamme directe à chambre unique,(dits « fours baleine » mais l’enfournement des pots se fait par l’arrière du four, contrairement au four anagama dont l’enfournement se fait par le devant du four

Une cuisson dans ce four demande un mois de travail, rangement du bois 15 stères  environ, enfournement durant une semaine, la cuisson dure cinq à six jours (et nuit), refroidissement du four: 10 jours, défournement et nettoyage du site.

Le bois utilisé pour cuire le four anagama est principalement du chêne; nous avons la chance d'avoir de nombreuses forêts à proximité de La borne, une entreprise locale qui fabrique des merrains, pièces de bois nécessaire pour la fabrication des tonneaux viticoles, nous vend le bois non utilisé pour leurs fabrications.

Pour cette cuisson, une équipe de 10 personnes, céramistes professionnelles,  est constituée. Six quarts de 4 heures avec deux cuiseurs est nécessaire prenant 6 jours. Un(e) ou deux responsables de cuisson, coordonnent l’équipe et le suivi de la cuisson.

Il faut également gérer les hébergements, les repas des cuiseurs et une équipe de médiateurs qui fait l’interface entre le public et les cuiseurs. En effet, réaliser une cuisson de qualité dans ce four est une tache délicate qui demande de l’expérience et de l’attention.

L’enfournement consiste à placer les céramiques dans le four de façon judicieuse, c’est à dire en pensant au passage de la flamme et à l’exposition des pièces au feu. En effet le dépôt des cendres du bois, les traces de  feu (oxydo-réduction) ainsi que le positionnement précis des céramiques entre elles demandent de l’attention pour avoir de bons résultats. Il ne s’agit pas simplement de cuire les pièces, mais avant tout, de tout faire pour obtenir de belles matières. On pourrait réduire de moitié la durée de la cuisson et la consommation de bois, mais le résultat ne serait pas à la hauteur de notre attente. Ce type de cuisson de longue durée, lorsqu’elle est bien conduite, nous permet d’obtenir quelques belles céramiques, pièces uniques, qui gardent et expriment l’intensité du feu, conjugué avec les formes et les volumes de pièces. Chaque pièce est placée sur des petites billes de terre réfractaire pour éviter quelles ne se collent sur les plaques d’enfournement. C’est un travail long et minutieux.
Certaines  pièces sont placées dans le cendrier du four, dans l’alandier, les traces de cendres fondues, de flammes  et de braise sont alors intenses.

La porte d’entrée du four est  fermée avec des briques réfractaires, en prenant soin d’aménager des petites ouvertures pour placer le bois

La cuisson est dans un premier temps lente et progressive, le feu devant être très modéré les premiers jours afin de sécher le four et les céramiques, qui sont enfournées » crues ». C’est le « bassinage ». Le bois est placé en bas de l’alandier, puis la quantité de bois est lentement augmentée afin de constituer une couche de braises épaisse.
Après deux ou trois jours de cuisson, la braise étant haute, le bois est placé par petites charges à intervalles réguliers, dans le four par la porte du haut, Il faut prendre soin de bien laisser bruler le bois et, en même temps,  de maintenir le feu et la production de flammes. Celles-ci s’allongent  de plus en plus.

Oxydo-réduction: La chaleur produite provient de la combustion du bois (carbone) avec l’air (oxygène). C’est une réaction chimique bien connue: carbone + oxygène donne du CO2 et de la chaleur. Lorsque l’on donne du bois au four, on apporte une grande quantité de carbone,, il y a donc alors un excès de carbone dans le four, la quantité d’oxygène étant  constante. On observe l’apparition de flammes dans la cheminée, le carbone brûle dehors  l’oxygène de l’air, il y a en outre émission d’une odeur caractéristique. Dans le four le carbone recherche de l’oxygène, il va en trouver dans les oxydes métalliques contenus dans la terre, principalement de l’oxyde  de fer.  Il va donc « manger » leurs atomes  oxygène et donc les  dégrader. la molécule d’oxyde de fer va ainsi perdre peu à peu ses atomes d’oxygène , elles seront donc réduites en taille, c’est la réduction. L’oxyde FE3O4 va donc devenir FE2O3, puis FEO puis FE (fer non oxydé). Chaque oxyde ayant  sa propre couleur, de plus en plus vive au fur et à mesure qu’il perd ses oxygènes, d’où les variations de couleurs observées au défournement des céramiques. De plus le contact des pièces les unes sur les autres perturbe et nuance ces variations de couleurs.

Les cendres, qui fondent à partir de 1250°C, donnent également des brillances et des variations de couleurs propres aux cuissons dans les fours à bois. Les fours à gaz et au  charbon donnent des effets de couleur liées au carbone, dans les fours électriques, sans combustion, il n’y a pas de variations de couleurs de la terre  ou de l’émail.

Le contrôle des températures se fait visuellement avec des « montres » , bâtonnets de céramique étalonnés pour fondre à des températures prédéterminées. Voir modèle. Ces montres sont placées dans le four de telles façons que l’on puisse les voir durant la cuisson. Les pyromètres sont simplement utiles pour indiquer les variations de température.

Les potiers traditionnels de La Borne plaçaient dans le four de anneaux de terre qu’ils ressortaient  du four pour apprécier la cuisson et la température.

Un « embraisage » est fait à la fin de la cuisson par les deux ouvertures latérales afin de mettre en contact les pots avec la braise, pour une « super » réduction avec des effets recherchés.

En fin de cuisson , le four est soigneusement fermé avec un mélange de terre et de sable afin d’éviter un refroidissement brutal des céramiques. Sans ce travail, de nombreuses pièces seraient détruites ou fragilisées (point quartz de la silice…)

 

 

 

.

Lire la suite...

samedi 6 août 2011

Les cuivres saturés

CUIVRE SATURÉ

Les différentes couleurs que peut révéler cet oxyde sont développées en alternant oxydation et réduction, en découvrant et en recouvrant la pièce encore très chaude  avec de la sciure. Les couleurs apparaissent , mouvantes, comme vivantes. Elles sont fixées avec de l’eau. Ces gestes demandant une grande précision doivent et être renouvelés  parfois plusieurs fois pour obtenir un résultat satisfaisant. Cette technique demande trois cuissons.

Lire la suite...

mardi 5 juillet 2011

Jardin

1.jpg
10.jpg
11.jpg
12.jpg




13.jpg
14.jpg
15.jpg
16.jpg




17.jpg
18.jpg
19.jpg
2.jpg




20.jpg
21.jpg
22.jpg
23.jpg




24.jpg
25.jpg
26.jpg
27.jpg




28.jpg
29.jpg
3.jpg
30.jpg




31.jpg
32.jpg
33.jpg
34.jpg





36.jpg
36.jpg
37.jpg
38.jpg




4.jpg
5.jpg
6.jpg
7.jpg




lundi 7 février 2011

Nécessaire pour la pharmacie dans l'atelier

accident/urgence/conseils: le 15
pompiers: le 18


BRULURES:
. 10 mn  minimum sous l’eau froide
. Biafine, en couche épaisse
. Compresse ou bande

COUP, HEMATOME, BLEUS:
. Hémoclar (pommade)
. arnica montana

PLAIES:
. laver la plaie avec du sérum physiologique
. désinfectant: chlorehexine
. pansement: Stérilux

DOULEURS ET FIEVRES:
. Nurofen et Doliprane , alterner les deux médicaments.
.Yeux: laver au Dacrylum

COUP, ENTORSES, PIQURES D’INSECTES:
. froid: Biofreeze
. piqures: locoïd
. Cold Hot, à mettre dans le congèle ou le micro onde

ALLERGIE, ROUGEUR, COUP DE SOLEIL:
. apis mell

lundi 24 janvier 2011

L'enfumage dans une fosse

Cette technique d’enfumage est relativement aisée, le principal travail consiste dans la préparation des céramiques modelées en terre blanche ou ferrugineuse. Celles-ci devront être préalablement biscuitées et réalisées en terre fortement chamottées de préférence et soigneusement polies à l’agathe par exemple.

1.jpg 2.jpg 3.jpg 4.jpg
       
5.jpg 6.jpg 7.jpg 8.jpg


La fosse doit avoir une profondeur de 70 cm environ. Un lit de sciure, de petites branches de bois, de feuilles mortes et différentes matières organiques (algues, paille, etc…) est déposée au fond de cette fosse. Sur ce lit végétal sont entassées les céramiques préparées , des matières végétales calent ces céramiques.

Le feu est allumé et peut-être rapidement monté en puissance, il est entretenu vif pendant plusieurs heures, un lit de braise doit recouvrir les céramiques. On ferme la fosse avec des tôles qu’on recouvre de pelletées de terre végétale . Il faut laisser quelques entrées d’air pour assurer le tirage. Le contrôle de l’oxygène s’effectue en obstruant les trous d’aération avec de la terre ou en soulevant les tôles pour provoquer une flamme claire et ainsi favoriser des mouvements de sels et sulfates métalliques autour des pièces. À la fin de la cuisson une plaque de métal recouvre entièrement la fosse afin d’étouffer celui-ci et maintenir un fort enfumage et  une bonne réduction. Une couche de terre est posée sur la plaque métallique  afin d’étouffer le feu et éviter une ré-oxydation trop importante au refroidissement. Des traces de carbone restent ainsi fixées sur les céramiques.

Un abris de tôles métalliques permettra de faire des enfumages par tout les temps.

10.jpg 11.jpg 12.jpg 14.jpg
       
9.jpg 13.jpg 15.jpg 16.jpg


Préparation des céramiques:

Des solutions de sulfate de fer (100gr/litre), sulfate de cuivre (20gr/litre) et sulfate de cobalt (25gr/litre) peuvent être appliquées sur les pièces déjà biscuitées, elles apporteront de nuances de couleurs intéressantes. Les céramiques sont emballées dans des feuilles de papier journal recouvertes de barbotine fibrée pour assurer une bonne étanchéité, fixées avec des adhésifs. Du sel marin, des oxydes/sulfates et carbonates de cuivre et de fer, des matières organiques seront déposées entre la céramique et le papier ou dispersés dans le four entre les pièces. Elles sont emballées à l’adhésif ou à la ficelle. Des fils de cuivres de différentes grosseurs, ou des ficelles enduites avec des saumures salines entourent les céramiques et laissent, après cuisson, des lignes de couleurs intéressantes. Des tissus enduits de solutions salines, puis séchées, recouvrent les pièces et apportent également de riches nuances colorées.

Après défournement et nettoyage, une cire d’abeille est posée à chaud (40°) sur les céramiques pour raviver les couleurs.

 

mardi 18 janvier 2011

décor relief à la poire

Méthodologie:

1) délayer 2 à 3 kg de “ball clay” (ou une argile fine et très plastique) avec de l’eau  pour faire une bouillie très épaisse

poire3.jpg

2) Rajouter du défloculent, peu à peu, goutte à goutte dans la barbotine épaisse en train d’être délayée mécaniquement (avec une perceuse, lentement) jusqu’à la liquéfaction de celle-ci. La barbotine devient liquide comme une huile épaisse.

Attention de ne pas trop ajouter du défloculent car la barbotine figerait et deviendrait inutilisable. Dans ce cas il faudrait rajouter de l’argile pour que la barbotine devienne liquide. À titre d’information, il faut mettre environ 0,5 % de défloculent du poids de l’argile sèche.

Il est conseillé de laisser reposer la barbotine une nuit pour améliorer la liquéfaction de la barbotine.

3) Rajouter de l’argile sèche en poudre et continuer à délayer lentement avec la perceuse. Ne pas rajouter d’eau. La barbotine épaissie peu à peu. Il est parfois nécessaire de rajouter un peu de défloculent. Recommencer l’opération jusqu’à avoir l’épaisseur désirée. Pour être utilisée avec une poire de décoration, cette barbotine doit être très épaisse.

  poire.jpg  poire2.jpg

jeudi 13 janvier 2011

Quelques matières premières utilisées en céramique

L’Argile:

Terre principalement composée de silicates hydratés d’aluminium, mais aussi de métaux et de molécules provenant de restes sensiblement organiques (composés présents dans les estuaires). “L’argile théorique” est composée de silice, d’alumine et d’eau : 2 SiO2 + Al2O3 + H2O.
Le matériau le plus proche de cette définition idéale est le kaolin.
Produite par la “décomposition” de feldspath et souvent altérée au cours du cycle de formation des roches métamorphiques, l’argile peut avoir diverses teintes: blanche lorsqu’elle est calcaire (voir marne, kaolin), jaune en présence d’oxyde de fer hydraté (voir ocre jaune), ou rouge (alors créée dans les fonds océaniques, parait-il).
Certaines argiles sont naturellement plus grasses que d’autres. Celles qui contiennent du carbone sont particulièrement visqueuses. D’autres, comme la faïence rouge, le sont plus modérément, mais encore assez pour rendre parfois nécessaire l’emploi d’agents “dégraissants” : “les silices” et la chamotte.

Cette substance très importante présente d’innombrables aspects. Ses emplois sont très anciens mais aussi très contemporains (céramiques couvrant les engins spatiaux, prothèses dentaires, etc.).
 

La silice:

La silice est constituée de dioxyde de silicium, un composé chimique qui entre dans la composition de nombreux minéraux ; sa formule est SiO2.
La silice existe à l’état libre sous différentes formes cristallines ou amorphes et à l’état combiné dans les silicates, les groupes SiO2 étant alors liés à d’autres atomes (Al : Aluminium, Fe : Fer, Mg : Magnésium, Ca : Calcium, Na : Sodium, K : Potassium…).
Base de plusieurs arts du feu (glaçure, verrerie et poterie essentiellement), la silice est une substance transparente ou blanche  qui peut prendre neuf formes différentes. Cependant, elle est le plus souvent associée dans la nature à de nombreuses autres substances. Le feldspath, notamment, est une matière très courante contenant d’immenses quantités de silice mêlée d’autres éléments.
La silice est la substance fondamentale pour tous les arts du feu hormis la métallurgie. Elle est très présente dans les terres à cuire et encore plus dans le verre. Cuite pure, elle donne d’ailleurs un verre parfait.
Très souvent, préparée pour une utilisation comme glaçure ou comme verre, la silice se présente généralement sous la forme d’une poudre extraite de sables très purs comme ceux de Fontainebleau et de Nemours.
La température de fusion de la silice, très élevée - de l’ordre de 1 800°C (avec un début de liquéfaction au-delà de 1 700°C) , en fait un matériau si réfractaire qu’en comparaison, les autres molécules fréquemment employées lors des cuissons - à part l’alumine et quelques autres - jouent toutes le rôle de “fondants”.

Plus un émail est chargé de silice, plus il nécessite une haute température et donne des résultats bien durs, “chimiquement résistants”, insolubles, se dilatant peu et adhérant d’autant mieux au support.
Toujours dans le domaine des arts du feu, les substances que l’on nomme couramment “les silices” sont le quartz, le sable et le silex calciné. Leur rôle est généralement de permettre une vitrification “accélérée” et de faciliter l’adhérence des glaçures.

Parmi les sables réputés les plus purs (au-delà de 99,6% de silice), nous citerons le sable de Fontainebleau et celui de Nemours. Ils sont très utilisés dans les domaines de la verrerie et des émaux.
Le verre de silice pure est le plus résistant à tous points de vue, mais sa haute température de fusion (1710°C sans fondant sinon autour de 1200°C très approximativement) et les difficultés de mise en forme à l’état liquide expliquent qu’il soit peu courant. La chaux carbonée (pierre à chaux) et la soude sont des “fondants” communs permettant d’abaisser cette température.

 

Le feldspath:

les feldspaths sont des ensembles de deux, quatre ou six molécules de silice liées à une molécule d’alumine et un oxyde de métal alcalin (potassium, sodium, calcium ou lithium. Ils sont peu colorés, mises à part les impuretés. Comme toutes les roches siliceuses, dans certains cas, les feldspaths peuvent, à la suite d’un échauffement, devenir cristallins (refroidissement lent, donnant parfois de gros cristaux) ou vitreux (refroidissement rapide).
Roches mères de l’argile, composants très importants du basalte, du granite et d’autres minéraux, ils représenteraient un peu moins de 60% de la masse de la croûte terrestre.
Suivant un cycle géologique naturel général, les feldspaths sont destinés à se transformer en argile en libérant leurs métaux alcalins.
Il existe différents “feldspaths théoriques”, c’est-à-dire différentes formules chimiques de feldspaths, mais la plupart du temps, elles sont mélangées. L’orthose, variété majoritaire, est potassique. En sculpture et en poterie, elle est préférentiellement adjointe à la terre qui joue le rôle de substrat tandis que l’albite, variété sodique, est un peu plus utilisée pour les glaçures à cause de légères différences de comportement lors de la cuisson. Seule l’anorthite (base calcique) en grande quantité réagit vraiment autrement à chaud. En effet, les oxydes de potassium, de sodium et de lithium ont des comportements proches et diffèrent nettement de CaO.
 

L’alumine:

L’alumine ou oxyde d’aluminium, de formule chimique Al2O3, est un composé chimique qui existe à l’état naturel dans la bauxite, sous forme d’alumine hydratée mélangée avec de l’oxyde de fer.
L’extraction de l’alumine de la bauxite est réalisée suivant un procédé chimique appelé procédé Bayer inventé par l’Autrichien Karl Josef Bayer. La bauxite y est attaquée par la soude à haute température et sous pression. La première usine à exploiter ce procédé est l’usine de Gardanne (anciennement Pechiney) en 1894. Cette usine produit toujours à ce jour des alumines hydratées et calcinées suivant ce procédé.
L’alumine représenterait plus de 15% de la masse de la croûte terrestre. Son minerai principal est la bauxite, mais elle est présente dans d’innombrables roches. L’alumine et l’hydrate d’alumine se présentent sous la forme de poudres très fines et légères.
Sa température de fusion extrêmement élevée (2040°C environ) rend nécessaire :
- un usage parcimonieux. En fait, le plus souvent, l’alumine n’est guère introduite à l’état pur dans une glaçure mais plutôt sous la forme de feldspath ou d’autres matériaux naturels ou synthétiques qui contiennent cette molécule.
- l’adjonction de “fondants” ou l’emploi de matériaux “porteurs” d’alumine étant eux-mêmes des fondants.

 Plusieurs pierres précieuses sont à base d’alumine anhydre, colorée ou non par des oxydes métalliques : rubis, topaze, saphir.
 

Les fondants:

Un “fondant” est un additif incorporé à une terre à cuire ou un autre minéral (comme la silice en ce qui concerne le verre) de sorte à abaisser la température de fusion de cette terre, de ce minéral.
Les cendres végétales, le talc, l’oxyde de fer, les frittes et le feldspath sont des fondants des terres ou du moins de certaines terres car toutes ces matières n’ont pas les mêmes températures de cuisson et certains “fondants” risqueraient de jouer le rôle inverse pour des terres cuisant à basse température. Par exemple, le feldspath est fondant du kaolin mais pas d’une faïence.
La pierre à chaux et la soude sont des fondants du verre.
 

La Craie:

La craie est une roche sédimentaire contenant presque exclusivement du carbonate de calcium CaCO3 et un peu d’argile. La craie est perméable, poreuse et friable.
La craie est un calcaire un peu particulier. Généralement très pure, elle peut cependant être marneuse (lorsque le calcaire et l’argile sont en proportions à peu près égales), glauconieuse (si elle contient de la glauconie), dolomitique (si elle contient des recristallisations de dolomite comme dans la craie de Vernon), à silex, etc.
La craie est avant tout un minéral naturel. Pour être considérée comme craie, une roche doit contenir au moins 90% de calcite, en deçà de quoi elle est considérée comme simplement calcaire.

 

PROPRIETES DES PRINCIPALES MATIERES PREMIERES UTILISEES EN CERAMIQUE

LES DEFLOCULANTS


CARBONATE DE SOUDE
 
Utilisé comme défloculant dans les barbotines en combinaison avec le silicate de soude.
DOLAFLUX
 
Agent de défloculation, se présente sous la forme d’une poudre noire, s’utilise en remplacement du silicate et du carbonate de soude. Se délaye dans une petite quantité d’eau chaude avant mélange.

SILICATE DE SOUDE
 
Employé comme défloculant dans les barbotines, en combinaison avec du carbonate de soude.

 

 

LES MATIERES PREMIERES


SILICE BROYEE
SiO2  98.8 %
Perte au Feu  0.2 %
Il s’agit d’une poudre de sable quartzeux directement utilisable pour préparer les émaux sans passer par une phase de broyage.


CRISTOBALITE
SiO2 99.03 %
Al2O3 0.18 %
CaO 0.51 %
MgO 0.11 %
Na2O 0.07 %
Fe2O3 0.07 %
K2O 0.03 %
Perte au Feu  0.16 %
Cette autre variété de silice présentant une forte dilatation vers 200°C. Elle est principalement utilisée pour corriger la dilatation des pâtes mais peut également être utilisée dans les émaux.


ACIDE BORIQUE
B2O3 : 56.2-56.7 %Equivalent H3BO3 99.9 %
Il permet d’introduire le bore dans les émaux sans ajout de soude. Il est soluble dans l’eau chaude ce qui peut limiter son utilisation.


BORAX DESHYDRATE
B2O3  68.50 %
Na2O  30.50 %
H2O  1.0 %
Le borax est une source de bore très utilisée. Sa teneur en NaO permet d’abaisser la température de fusion des émaux. Il est moins soluble dans l’eau que la forme hydratée, ce qui facilite son utilisation.

COLEMANITE
SiO2 4.5 %
Fe2O3 0.5 %
B2O3 42.0 %
CaO 26.0 %
NaO 1.2 %
MgO 1.5 %
Perte au Feu  24.0 %
Source naturelle de bore, qui présente l’avantage d’être insoluble dans l’eau, ce qui permet de conserver les bains d’émaux. Utilisée comme une fritte naturelle, la colémanite permet de réaliser des émaux avec des températures de fusion de 1000°C à 1100°C. En petits ajouts, elle améliore la brillance.
A calciner avant utilisation au dessus de 5%


BORAX DESHYDRATE
B2O3  68.50 %
Na2O  30.50 %
H2O  1.0 %
Il permet d’introduire le bore dans les émaux sans ajout de soude. Il est soluble dans l’eau chaude ce qui peut limiter son utilisation.


CENDRE D’OS
P2O5 40.1 %
SiO2 0.23 %
CaO 53.7 %
MgO 1.07 %
Na2O 0.92 %
Perte au Feu  3.11 %
Ce phosphate de calcium est issu de la calcination d’os. Utilisé traditionnellement pour la fabrication de pâtes (bone china) et de certains émaux.


ALUMINE CALCINEE
Al2O3  99.9 %
L’alumine calcinée est la source idéale d’aluminium pour les émaux, si on souhaite jouer uniquement sur la teneur en Alumine de la formule sans aucun autre apport.
ALUMINE HYDRATEE
Al2O3 62.84 %
SiO2 0.8 %
Na2O 0.66 %
Fe2O3 0.53 %
K2O 0.14 %
Perte au Feu  0.10 %
En perdant l’eau d’hydratation, cette alumine deviendra l’identique de l’alumine calcinée. Elle présente cependant une plus grande réactivité que l’alumine calcinée et entre donc plus facilement dans le flux vitreux.


KAOLIN CALCINE OU MOLOCHITE
Al2O3 42 %
SiO2 54.5 %
CaO 0.06 %
MgO 0.31 %
Na2O 0.1 %
Fe2O3 1.0 %
TiO2 0.07 %
K2O 2.0 %
Le kaolin calciné permet d’introduire de l’alumine dans les émaux sans affecter la rhéologie des bains comme avec les kaolins naturels que l’on utilise plutôt comme suspensifs.


CARBONATE DE LITHIUM
Li2O 99.0 %
Na 0.12 %
SO4 0.30 %
Divers  0.58 %
Le carbonate de lithium est insoluble. On l’utilise en faible pourcentage pour améliorer la brillance des émaux.


CARBONATE DE POTASSIUM
K2O 99.2 %
KHCO3  0.7 %
Cl 0.1 %
Le carbonate de potassium est soluble. Il peut être utilisé pour introduire K2O sans apport d’autre élément.


CRYOLITHE
Na  32.9 %
Al  12.8 %
F 54.3 %
Fluorure de sodium et d’aluminium. Source de soude et d’aluminium dans les émaux. Fondant puissant.
FELDSPATH LITHIQUE
K2O 4 %
Na2O 2.25 %
SiO2 70.8 %
Al2O3 17.4 %
CaO 0.16 %
MgO 0.08 %
Fe2O3 0.15 %
TiO2 0.03 %
Li2O 2.0 %
Perte au Feu  2.98 %
Feldspath très blanc, constitué en majeure partie de lépidolite. Le plus fondant des feldspaths alcalins.


FELDSPATH POTASSIQUE
K2O 10.50 %
Na2O 2.70 %
SiO2 68.20 %
Al2O3 18.00 %
CaO 0.20 %
MgO 0.15 %
Fe2O3 0.12 %
TiO2 0.02 %
Perte au Feu  0.40 %
Feldspath ultra blanc, constitué en majeur partie d’orthose 6 SiO2, Al2O3, K2O. Le moins fondant des feldspaths alcalins.


FELDSPATH SODIQUE
K2O 1.00 %
Na2O 9.0 %
SiO2 70.0 %
Al2O3 18.0 %
CaO 1.0 %
MgO 0.23 %
Fe2O3 0.10 %
TiO2 0.17 %
Perte au Feu  0.5 %
Feldspath très blanc, constitué en majeure partie d’albite 6SiO2, Al2O3, Na2O. Fusion intermédiaire entre lithique et potassique.


FELDSPATH ICE 10
K2O 10.0 %
Na2O 3.20 %
SiO2 67.8 %
Al2O3 18.5 %
Perte au Feu  0.4 %
Feldspath très blanc.


FELDSPATH SPEG
K2O 1.0 %
Na2O 8.00 %
SiO2 70.5 %
Al2O3 18.0 %
Perte au Feu  0.5 %
Autre forme  de feldspaths.


NEPHELINE SYENITE
K2O 9.0 %
Na2O  8.2 %
SiO2 55.8 %
Al2O3  24.4 %
CaO 1.0 %
Fe2O3  0.1 %
Minéral composé de feldspaths potassique, sodique et néphéline. Utilisée pour la réalisation d’émaux grès, elle est appelée « feldspath parfait » en raison de d’équilibre de sa composition moléculaire.


PEGMATITE
K2O 7.12 %
Na2O  0.34 %
SiO2 80.12 %+
TiO2 0.13 %
MgO 0.03 %
Al2O3  11.10 %
Fe2O3   0.11 %
CaO 0.04 %
Mélange naturel de feldspath et de quartz, la pegmatite est employée comme telle.


PETALITE
Li2O 4 %
Al2O3  16.5 %
SiO2 77.5 %
Na2O  0.35 %
K2O 0.25 %
MgO 0.1 %
CaO 0.25 %
Source naturelle de lithium, la pétalite présente l’avantage d’introduire très peu d’autres alcalins.

 
CARBONATE DE BARYUM
BaO 77.70 %
Perte au Feu  22.3 %
Permet de développer une teinte bleue turquoise en présence en présence d’oxyde de cuivre et un violacé avec la manganèse. Attention le BaCO3 est un poison.
A manipuler avec précaution.


CARBONATE DE CALCIUM (CALCITE)
CaO 55.50 %
SiO2 0.50 %
Al2O3  0.25 %
Fe2O3  0.15 %
PF 43.60 %
Appelé parfois abusivement chaux ou blanc d’espagne, le carbonate de calcium est très utile pour introduire CaO dans les formules d’émaux.


CARBONATE DE MAGNESIUM
(MAGNESITE)
MgO 43 %
SiO2 4 %
Al2O3  0.3 %
CaO 3.5 %
Fe2O3   0.15 %
So3 0.1 %
Le carbonate de magnésium est généralement introduit par la dolomie ( carbonate mixte Ca/Mg).
La magnésite permet d’introduire MgO sans CaO.
Favorise les craquelures dans les émaux raku.


CARBONATE DE STRONTIUM
SrO 68.09 %
BaO 0.80 %
Al2O3  0.5 %
Na2O  0.20 %
PF 28.91 %
Le carbonate de strontium est un des rares moyens d’introduire SrO dans les émaux. Il peut être utilisé par exemple en substitution de Mg O pour éviter la dévitrification dans certains cas.


CENDRE DE BOIS DUR OU CENDRE DE CHENE
CaO 39.67 %
SiO2 15.75 %
Al2O3 2.09 %
MgO 2.31 %
Na2O 0.50 %
Fe2O3 0.94 %
TiO2 0.19 %
K2O 4.04 %
P2O5 1.28 %
Perte au Feu  29.20 %
Les cendres permettent d’introduire de nombreux oxydes modificateurs à la fois. Elles sont utilisées pour conférer des textures particulières aux émaux. Les cendres vendues ici sont broyées et lavées.


CENDRE DE LAVANDE
CaO 29.26 %
SiO2 16.59 %
Al2O3 3.54 %
MgO 5.66 %
Na2O 0.39 %
Fe2O3 1.26 %
TiO2 0.21 %
K2O 14.71 %
P2O5 4.88 %
Perte au Feu  20.30 %
Cendre broyées et lavées, donne aux émaux grès des couleurs et textures particulières différentes de la cendre de bois.


DOLOMIE
CaO 31 %
MgO 20 %
SiO2 0.05 %
Al2O3 0.10 %
FeO3 0.01 %
Perte au Feu  47.0 %
Ce carbonate doublé de calcium et de magnésium est très utilisé comme fondant dans les émaux, sert également dans les faïences dolomitiques.


SPATH FLUOR
CaO 68.10 %
Divers  21.90 %
SiO2 6.0 %
Al2O3  4.0 %
La fluorine CaF2 est un fondant énergique qui apporte de plus de l’opacité aux émaux par formation de cristaux de fluorure. Le spath fluor doit être utilisé avec précision car un mauvais dosage peut provoquer de bouillonnement de l’émail.


TALC
SiO2 53 %
Al2O3 1.3 %
CaO 0.17 %
MgO 30.0 %
Fe2O3 0.50%
Silicate de magnésie hydraté, utilisé dans les émaux, il apporte de l’opacité et une matité soyeuse. Dans les pâtes céramiques, en particulier dans les pâtes faïence dites « mono cuisson », ou pour améliorer la résistance aux chocs thermiques. C’est aussi un fondant secondaire en présence de magnésie.
Il produit des effets à retenir avec le chrome et le cobalt.


WOLLASTONITE
SiO2 51.5 %
Al2O3 0.3 %
CaO 5.5 %
MgO 0.8 %
Na2O 0.05 %
Fe2O3 0.2 %
Divers 1.85 %
Perte au feu 1.5 %
Métasilicate de chaux.
La Wollastonite est utilisée comme véhicule de CaO dans les émaux pour supprimer la formation de gaz, ceci facilitant la mono cuisson des produits.


ZINC
ZnO 100 %
L’oxyde de zinc est un agent fondant possédant une température de fusion moyenne à haute mais uniquement en mélange avec d’autres fondants. En petites quantités, il améliore la brillance. En plus fortes proportions, il peut conduire à une opacification ou à rendre l’émail mat.


ARGILE BALL CLAY
SiO2 48.09 %
Al2O3 33.7 %
CaO 0.2 %
MgO 0.3 %
Na2O 0.2 %
Fe2O3 1.2 %
TiO2 0.9%
K2O 1.6 %
Perte au Feu 13.0 %
Le nom anglais Ball Clay provient de la faculté de ce type d’argile à former des « boules » ce qui atteste d’une grande plasticité, d’une bonne cohésion. Pour ces qualités, les Ball-Clays sont employées dans la fabrication de pâtes céramiques et ce sont ces mêmes propriétés qui font d’elles de bons additifs pour assurer la suspension dans l’eau des autres matières.


BENTONITE
SiO2 70.50 %
Al2O3 13.75 %
CaO 1.12 %
MgO 5.4 %
Na2O 1.8 %
Fe2O3 1.04 %
TiO2 0.24 %
K2O 0.35 %
Perte au Feu 5.80%
La bentonite est une argile très spécifique recherchée en céramique pour sa très grande plasticité qui est liée à la forme et à la taille de ses particules. Dans les émaux elle permet de maintenir en suspension des mélanges même les particules des matières inertes assez grossières. C’est un puissant suspensif.


CHLORURE DE BARYUM
BaCL22H2O 98.5 %
H2O 1.30 %
Divers 0.20 %
Incorporé dans les bains d’émaux, il permet de les floculer. Peut se substituer au carbonate de baryum dans certaines applications.

KAOLIN A
SiO2 49.7 %
Al2O3 34.8 %
Fe2O3 0.85 %
TiO2 0.10 %
K2O 2.20 %
Perte au Feu 12.35 %
Silicates d’aluminium naturels provenant d’argile primaire très réfractaire. Ils durcissent les émaux trop fusibles et permettent de maintenir en suspension les matières dégraissées dans l’émail.

 

 

 

 

 

 

 

 

 

 

 

 

 

jeudi 6 janvier 2011

bols estampés, différentes techniques

Les bols peuvent être estampés sur des:

- formes en creux 

a14.JPG  

ou en bosse:

a17.JPG

Ces formes sont tournées épaisses en grès et cuites à 1000°. Le plus simple d’utilisation sont les moules en creux; il est cependant parfois nécessaire de talquer légèrement ces moules si la terre colle à la forme.

Lire la suite...

jeudi 30 décembre 2010

Quelques documents céramiques à télécharger

Lire la suite...

mercredi 29 décembre 2010

Les glaçures, les engobes et les oxydes

IMGP1499.jpgLa glaçure, appelée aussi émail, est un enduit vitrifiable posé à la surface d’une céramique afin de la durcir, de la rendre imperméable ou de la décorer. Lorsqu’elle est appliquée sous forme liquide, la glaçure se présente comme une poudre fine, composée de minéraux ou d’oxydes, qui doit être mélangée à de l’eau et à d’éventuels additifs. Le mélange doit être homogène et stable dans le temps pour assurer une bonne conservation. Il doit permettre de bonnes conditions d’émaillage, de séchage et de tenue jusqu’à l’enfournement.

 

Lire la suite...

mardi 28 décembre 2010

Le raku-nu

40.JPGCette très belle expression céramique conjugue deux techniques: les terres polies et l’émaillage. La terre polie doit être préalablement cuite entre 900 et 950° pour garder la qualité du polissage.

Lire la suite...

Infos Légales

  • Aux termes de la Loi n°2004-275 pour la Confiance dans l’Economie Numérique, voici les coordonnées de l’hébergeur du site: SARL OVH 140, quai du Sartel 59100 ROUBAIX Tel : 0 899 701 761 Fax : 03 20 20 09 58
  • Conformément à la loi relative à l’informatique, aux fichiers et aux libertés du 6 janvier 1978, vous disposez d’un droit d’accès, de modification, de rectification et de suppression des données vous concernant. Vous pouvez exercer ce droit en envoyant un courrier à Dominique Legros.


  • Droits d’auteurs: L’ensemble de ce site est protégé par le droit de la propriété intellectuelle. Toute reproduction ou représentation, en tout ou partie, sans le consentement de l’éditeur, est interdite.

Les différentes terres

p1.jpgLa céramique est un art pratiqué depuis la préhistoire. Elle est née de la transformation sous l’action du feu d’un matériau universellement répandu qui est une terre, “argile”.

 

Lire la suite...

- page 3 de 5 -